
Sustainable Computing: Informatics and Systems 32 (2021) 100603

Available online 28 August 2021
2210-5379/© 2021 Elsevier Inc. All rights reserved.

Investigating the impact on execution time and energy consumption of
developing with Spring

Coral Calero *, Macario Polo, Mª Ángeles Moraga
Alarcos Research Group, University of Castilla-La Mancha, Paseo de la Universidad, 4 13071 Ciudad, Real, Spain

A R T I C L E I N F O

Keywords:
Energy consumption
Spring
Green software
FEETINGS
Software sustainability

A B S T R A C T

Respect for the environment has become a feature of life that is essential to take into account in our present-day
society. Nevertheless, although software consumes large amounts of energy, in the software development sector
it seems that awareness of this issue is still lacking. As software engineers, we must contribute to bringing about a
change of vision in the sector. A good way of doing so is by giving companies clear guidelines on how to act. In
this paper we present an example of this, focused on Spring. Spring is a server-side Java development framework
that reduces the time to market of new applications, helps developers to save a great deal of development time,
and hence improves their productivity. Our objective is to discover whether all these advantages are also
accompanied by good energy consumption behaviour. To that end, we have compared the execution time and the
energy consumption required by three releases of the same application, developed with and without Spring. This
paper presents all the details of the study carried out, and sets forth our conclusions on the suitability of using
Spring in the development of software applications.

1. Introduction

Our dependence on software as human beings is proved by the fact
that it is nowadays difficult to find any activity which does not rely on
software; people have become used to placing on software applications
the responsibility for managing a significant part of their daily lives. This
is true with regards to their work, but even more so in relation to their
personal activities. Most of us, however, are not aware that using soft-
ware implies energy consumption.

Andrae and Edler [1] project and analyse several scenarios of energy
consumption in information technologies as we look towards 2030: by
then, in the worst case scenario, up to 51 % of global electricity could be
required for ICT (Information and Communication Technology), or 8 %
in the best of possible cases, and 13 % in the expected scenario.

With software being a key part of ICT, and taking into account that
society is increasingly concerned about environmental issues in almost
all aspects of life, the lack of awareness regarding software consumption
is surprising. This could be explained by the fact that there has not been
a specific culture built up around the issue; to date, software sustain-
ability has been the subject of only a few studies [2]. In fact, this lack of
culture is patently obvious in software companies, which should take
sustainability aspects into account as part of their business objectives,

and incorporate them in the actions defined in their Corporative Social
Responsibility (CSR) documentation. According to Calero et al. [3], the
majority of the CSR actions undertaken by the top ten software com-
panies are not related to software sustainability aspects.

Fortunately, as the use of mobile applications, embedded systems,
and data center-based services expands [4], software sustainability in
general, and software energy consumption in particular, are increasingly
becoming a concern. It would seem obvious that, since end-users can
very easily see in their energy bills the consumption of their desktop and
laptop computers, they should prefer software that consumes the least
possible amount of energy [5].

Little by little, then, sustainability is becoming an issue that should
encourage software practitioners to develop, manufacture and use
computers, servers and peripherals efficiently and effectively so as to
reduce damage to the environment [6]. However, research contributions
about current practices and the perspectives of software engineers in the
software sustainability field are still scarce [4].

In an attempt to facilitate good practices among software engineers
in developing sustainable software, we analyse in this paper whether the
use of Spring affects the energy efficiency of a software application or
not.

Spring [7] is a very widely used framework for developing the server

* Corresponding autor.
E-mail address: coral.calero@uclm.es (C. Calero).

Contents lists available at ScienceDirect

Sustainable Computing: Informatics and Systems

journal homepage: www.elsevier.com/locate/suscom

https://doi.org/10.1016/j.suscom.2021.100603
Received 24 January 2021; Received in revised form 13 July 2021; Accepted 18 August 2021

mailto:coral.calero@uclm.es
www.sciencedirect.com/science/journal/22105379
https://www.elsevier.com/locate/suscom
https://doi.org/10.1016/j.suscom.2021.100603
https://doi.org/10.1016/j.suscom.2021.100603
https://doi.org/10.1016/j.suscom.2021.100603
http://crossmark.crossref.org/dialog/?doi=10.1016/j.suscom.2021.100603&domain=pdf

Sustainable Computing: Informatics and Systems 32 (2021) 100603

2

side of Java applications in businesses and, although there exist other
frameworks with similar objectives (Spark or VRaptor, for example),
Spring is the most widely extended. It is based on the design patterns
Dependency Injection and Inversion of Control. Spring defines many Java
annotations which are processed in runtime using the Java Reflection
API. These annotations allow declarative-programming constructions to
be inserted in the application. Spring helps developers save a lot of
development time, since it avoids the writing of boilerplate code, so
improving their productivity during development. In fact, as remarked
in [7] "Spring makes programming Java quicker, easier, and safer for
everybody." However, as will be shown in Section 2, processing the an-
notations to generate code at runtime implies a massive use of reflection
that in turn leads to additional CPU cycles for the computer running the
system.

According to Belani [8], “nearly 90 percent of Fortune 500 firms rely
on Java for their desktop applications and backend development proj-
ects”and, according to a survey carried out by the Java-specialist web
portal Baeldung,1 83.7 % of 5160 companies surveyed use some version
of Spring in their software development. It is therefore of interest to
investigate what the long-term impact of using this technology may be,
especially considering that the programs and services offered by many
24 × 7 servers are implemented in Java and use Spring as supporting
technology.

Our goal for this paper is to analyse the impact of the use of Spring
compared to the use of a traditional approach, from the perspective not
only of execution time but energy consumption as well.

From a financial perspective, and depending on the results obtained,
companies might prefer to acquire systems which employ technologies
that consume less energy, even though this could require a higher initial
investment in their software development. Also, from the point of view
of social responsibility, it may now be seen as the time to move towards
more energy-efficient technologies.

This paper is structured as follows: Section 2 presents a brief over-
view of reflective programming and Spring, along with the main ob-
jectives of this work. Section 3 shows some related work, and in Section
4 the experiment is explained in detail. Once the foundations of the
experiment have been presented, the procedure to carry it out is ana-
lysed in Section 5. The threats to validity of the experiment are
explained in Section 6 and, lastly, conclusions are summarised and
future work outlined in Section 7.

2. A brief overview of spring, and the experimental objective in
a nutshell

Spring [7] is a technology widely-used for developing Java appli-
cations. By means of a broad set of predefined Java annotations, pro-
grammers can avoid writing a lot of boilerplate and repetitive code, thus
reducing the time to market of new applications.

Java annotations consist of a word that qualifies any element (class,
field, constructor or method) in a Java program. Annotated elements are
processed with the Java Reflection API. The annotation processor may
give the annotated element a specific behaviour. In Java, any object is an
instance of a class, but the self class is also an instance of the Class
reflective class: john being an instance of Person. Person is an instance of
the Class reflective class: as is seen in Fig. 1, a Class knows its whole set of
members via the reflective Constructor, Method and Field classes; the first
two are Executable, and all of them are Members.

A programmer can recover the class of an object and reflectively
inspect and manipulate its members. The code in the top part of Fig. 2 is
the declaration of a simple Person class, with two fields and two setter
methods. In the bottom part, the main function creates an instance of
that class and assigns values to its fields.

The same effect as in the bottom part of Fig. 2 can be obtained

reflectively, as seen in Fig. 3: the reflective Class corresponding to Person
is recovered; we then invoke its non-parameter constructor with the call
to the reflective newInstance method (a member of Class). The next two
statements reflectively search the setName and setLastName methods in
the class, which are later invoked with the desired arguments. Finally,
print prints the name and last name of the object.

Elements in the Person class could be annotated to receive specialised
processing. Suppose we want the value of the name field to always be
written in uppercase. We could create an @Uppercase annotation to
annotate this field, as seen in Fig. 4. The print method should be slightly
modified so as to pass those fields with that annotation into uppercase.

Spring includes many annotations that facilitate the development of
the server side of applications. Annotated elements are processed by
annotation processors which give a specific treatment to each annotated
element.

Spring applications are launched from a boot: before launching the
application logic, the run method of SpringApplication reviews the cor-
rectness of all the classes in the package and subpackages. This revision
inspects the annotated classes and, within each class, its annotated el-
ements. If Spring finds any error, the run method fails and the applica-
tion is not started.

From the perspective of the developer, the benefit of using Spring is
clear, but our objective here is to analyse the impact that the use or non-
use of Spring has on the time and energy required to perform given
operations. This paper compares the execution time and energy required
by two different types of Java backends that offer exactly the same set of
services. Both backends implement a server of board games. The players
in the games consume the services using their user agents. One of the
backends is implemented using Spring, while the other is not - and so
does not take advantage of the well-known declarative constructions of
this framework.

The code in Fig. 5, for example, shows some lines of the User class of
an actual project: since it is annotated as an @Entity, Spring knows that
there must be a correspondence of this class with a table in the database
called User. Thanks to the @Id annotation in the userName field, Spring
will use the userName column in the table as the primary key. The pro-
jects field is annotated with @OneToMany, which tells Spring that there
exists a 1..n foreign key relationship from the Project table to User. As
seen in this last example, annotations may contain additional informa-
tion between brackets, which Spring can also use in order to modify the
default behaviour assigned to the annotated element.

In a traditional approach, the programmer would write a specific
DAO (Data Access Object) class to deal with the persistence of User in-
stances. The UserDAO class, for example, should contain the classic
CRUD operations to manipulate the instances of this persistent class in
the database. With Spring, since the class is annotated as an @Entity, the
programmer needs only to write an interface (such as that in the top side
of Fig. 6). Even though the interface is empty, it offers the programmer
many more operations than the basic select, insert, delete and update. The
bottom part of the figure shows the operations that CrudRepository offers
by default: save for inserting and updating; findById to build an instance
from a record in the database; deleteById for deleting a record, etcetera.

As may be seen, Spring allows the development of applications to be
accelerated, thanks to the time savings in writing of the code. However,
our hypothesis is that the reflective processing of the annotated elements
requires more CPU cycles, more execution time and, most likely, more
energy than would be the case if performing the same tasks with no
reflection, in what we have called the “traditional approach”.

The experimental work presented in this paper thus attempts to
determine whether the use of Spring is better than a “classical” approach
in terms of both execution time and energy consumption. In an effort to
obtain a more general view of the software engineering practice, we
have considered the different steps relative to green software engi-
neering, as identified in [9] and shown in Fig. 7. We thus execute our
experimental work during development, operation and maintenance of
the software under study (i.e. developed using Spring, and developed 1 https://www.baeldung.com.

C. Calero et al.

https://www.baeldung.com

Sustainable Computing: Informatics and Systems 32 (2021) 100603

3

not using Spring).

3. Software engineering measurement background

It is important that developers be aware of the energy consumption
of the software they develop. However, as indicated in [10], pro-
grammers do not have much experience with regard to software energy
consumption. Pinto and Castor [11] conducted a survey with software

developers, seeking to understand their perceptions regarding software
energy consumption issues, and concluded that they do not fully un-
derstand how to write, maintain and evolve energy-efficient software
systems. Software developers currently have to rely on Q&A websites,
blog posts, or YouTube videos when trying to optimise energy con-
sumption; these resources are anecdotal, not supported by empirical
evidence, and may even be incorrect [4,12].

Fortunately, some efforts have been undertaken in an endeavour to
obtain more reliable results. For example, Pereira et al. analysed 27
software languages [13], aiming to provide software engineers with
support in deciding which language to use from the perspective of

Fig. 1. Some classes of the Java Reflection API.

Fig. 2. The Person class and the code for creating an instance.

Fig. 3. Reflective instantiation of “John Smith”.

Fig. 4. Annotation of a field (top) and processing of @Uppercase.

Fig. 5. A class with some Spring annotations.

C. Calero et al.

Sustainable Computing: Informatics and Systems 32 (2021) 100603

4

energy efficiency. To measure the energy consumption, they used Intel’s
Running Average Power Limit (RAPL) tool, which employs a software
power model to estimate the energy at a very detailed level. This same
tool was used to study, for instance, the energy behaviour of programs
written in Haskell [14], the energy consumption of short code paths
[15], or the energy consumption of the different Java Collection
Framework (JFC) implementations [16]. In [17] the authors propose a
spectrum-based energy leak localisation technique, namely SPELL, to
identify inefficient energy consumption in the source code of software
systems. As in the research previously mentioned, they used the RAPL
tool to estimate the energy consumption. In [18] the authors propose the
GreenOracle model, which is based on the dynamic traces of system calls
and CPU utilisation, to estimate software energy consumption. The
model was later improved, as a result of which the GreenScaler model
came into being [19].

In [20] the author proposes a model for analysing the asynchronous
power consumption of Android applications. Li et al. [21] calculate the
source line level energy consumption of mobile apps by combining
hardware-based power measurements with program analysis and sta-
tistical modeling. Zang et al. propose software application ratings based
on their energy consumption [22]. Eco Droid, proposed in [23], is an
approach that automatically ranks applications. A tool for monitoring
power consumption of an executing application, developed in [24], is
used to study how applying design patterns can impact on energy usage.

Maintenance is another stage where software energy consumption
must be taken into consideration. However, as indicated in [4], energy
concerns have largely been ignored during maintenance. In this respect,
Cruz et al. explore whether improving energy efficiency by applying
energy efficiency patterns has a negative impact on maintainability
[25].

In [26] the authors try to demonstrate that, on the domain of an
Android app, choosing a bundled MVP architecture can improve the
sustainability and energy consumption of a system without negatively

impacting system maintainability.
The general conclusions arising from the overview of energy mea-

surement presented above include: (1) there do exist some papers
related to energy consumption during software operation; (2) there are
hardly any works that measure the real consumption of software during
its development, and many of them are based on estimations; and (3) not
enough work has so far been undertaken to study the relationship be-
tween energy consumption and maintenance.

The study we have carried out considers and seeks to minimise these
weaknesses by: (1) measuring the energy consumption during the
execution of a software; (2) capturing measurements of the real con-
sumption and execution time needed; and (3) measuring these aspects
during maintenance.

4. Experiment description

Our main goal is to check whether the use or non-use of Spring in the
developing of the backend of applications influences execution time and
energy consumption. Given that the development of an application is
done once but it is executed several times, we focused our study in the
long term. Therefore, measuring the energy required during the devel-
opment itself is beyond the scope of this article.

To the best of our knowledge, no repositories can be found in which
the same application has been developed alternatively using and not
using Spring. For that reason, we decided to develop our own applica-
tions. We are well aware that, for a single example, the differences could
very well be small. Nevertheless, although a single application may not
have any great influence itself, the long-term impact of using one or
another technology in lots of applications running throughout the whole
world could mean a significant variation in cost in terms of CO2
emissions.

To accomplish our goal, we commissioned a senior programmer
(with more than 15 years of experience in Java programming) to
develop two versions of the backend of the same system using Java as
program languague - one with Spring and the other without Spring. Due
to the fact of these two different versions being developed by the same
programmer, any bias produced by having several programmers using
different programming styles was eliminated. Moreover, each version
has by now had three releases, which allowed us to incorporate main-
tenance activities into the study. We measured execution time and en-
ergy consumption for all releases of each version, using functional and
load tests.

4.1. Research questions

The research questions we seek to answer are the following:
RQ1. Is there a relationship between the execution time required by

an application at run time and the use of Spring during its development?
RQ2. Is there a relationship between the energy consumption needed

by an application at run time and the use of Spring during its
development?

4.2. Description of the system versions

The system we developed consists of a server used for the playing of
several board games. One version was developed with Spring, and the
other without it, but both versions (Fig. 8) offer exactly the same
functionalities.

In order to play a match in one of the board games on offer, the user
must first be logged into the server, which requires prior registration. If
necessary, the user can recover their password at any moment. Once the
user is logged in, they can select one of the games offered and play a
match. If there is another player waiting to play a match in that same
game, the match is started automatically; otherwise, the server creates a
“pending match” and the player must wait until another user requests to
join a match in the same game. When the match has two players, play

Fig. 6. The UserDAO interface deals with the persistence of Users.

Fig. 7. Green In Software Engineering [9].

C. Calero et al.

Sustainable Computing: Informatics and Systems 32 (2021) 100603

5

begins and each user makes moves, which are collected by the server
and communicated to their respective opponent via a Websocket.

All the information (users, matches and moves performed in each
match) is recorded in a MySQL database (Fig. 9) which is located in a
different physical machine. The CPU cycles executed by the database
server do not influence our measures.

4.3. Description of the three releases

To cover the different stages shown in Fig. 7, the programmer was
asked to implement three releases of each system version:

The first release, the development stage, offered two games: the
well-known Tic-tac-toe and Kuar. In Kuar two players are given a square
matrix with several unordered numbers (Fig. 10). In their user-agent, the
players must sort the numbers on the top board by moving them. The
moves performed by your opponent are shown on the bottom board. As
shown in Fig. 10, a match of Kuar is taking place with Lucas, the local
player, playing against Pepe. Note that the position of the number 5 has
been changed in the bottom board from the right to the central column:
this is because Pepe has moved number 5 in his user-agent. On the right-
hand side of the image, we see that, since Lucas sorted all the numbers
before Pepe, he wins the match.

In both versions (Spring and Non-Spring), the business logic is
accessed through a Manager, which keeps a collection of the players
currently logged on, of the games on offer and of the matches currently in
play. As seen in Fig. 11, Game is an abstract class that records a collection
of the pending matches (ongoing matches not yet completed). Match is
also an abstract class that has an abstract Board and knows up to three
players: playerA and playerB (which correspond to the player who
created the match and the player who joined the existing match,
respectively) and winner, a reference to either playerA or playerB, which
records who has won the match. AbstractPlayer has two specialisations
(which are not of interest in this context), depending on the method used
by the user for login to the server.

Fig. 12 shows the specialisations of Game, Match and Board for the
game Tic-tac-toe: since both players in a Tictactoe match share the same
board, each TictactoeMatch knows just one instance of TictactoeBoard.
The Kuar game (Fig. 13) likewise requires the same specialisations
(KuarGame, KuarMatch and KuarBoard), but its implementation is more
complex, because each player has their own board (although the initial
configuration of the board is the same it then changes according to the
players’ moves).

The Non-Spring version has the three-layer design shown in Fig. 14.
The persistence responsibilities of the business classes are delegated to
several DAO (Data Access Objects) classes, which directly include the
embedded SQL code necessary to execute the desired operations by
means of PreparedStatement objects

The Spring version follows a Model-View-Controller pattern (Fig. 15).
The Manager acts as the controller and is in charge of requesting Spring

repositories to deal with the persistence of persistent classes.
As stated earlier, each move made by a player is recorded in the

database:

• In the Non-Spring version, the method in charge of inserting the move
is the one shown in Fig. 16: it builds a PreparedStatement object and
sets the values to the corresponding parameters.

• In the Spring version, Movement is an @Entity-annotated class whose
persistence is managed with an empty CrudRepository (see Fig. 6),
whose code appears in Fig. 17.

The second release proceeds from a preventive maintenance inter-
vention carried out after having analysed both versions with Sonar-
Cloud. Preventive maintenance improves the internal quality of a
software product (maintainability, for example) without modifying its
functionalities. Accordingly, this second release offers the same two
games (Tic-tac-toe and Kuar) in exactly the same manner as in the pre-
vious release.

The reason for performing this maintenance intervention was to
remove any possible bad practices of the programmer, “inherited” after
many years of coding in Java, as well to gain two balanced,
quantitatively-equivalent versions.

Table 1 summarises the results of the SonarCloud static analysis.
Note that the Spring version shows better values in all the numeric
variables, but also that both versions pass the “Quality gate”, which is a
set of boolean values that indicate whether the project is ready to pass to
production.

The Non-Spring system has 417 lines of code more than the Spring
system. Most of this difference is attributable to the DAO classes, and
consists in very similar methods that perform persistence operations
with the database. Most of the problems detected in the Non-Spring
system (bugs, vulnerabilities, etc.) are also to be found concentrated
in these classes.

When we showed the Sonar report to the developer he acknowledged
that many of the highlighted issues correspond to not-so-good practices
that he has been carrying out in his work over many years. For example,
36 of the 119 code smells in the Non-Spring system are attributable to
methods that trigger the generic Java Exception, instead of a specific
exception. It should be noted that after reading the Sonar report the
developer fixed all the issues that were flagged in it.

Subsequently, a different senior programmer reviewed the same
code and a new Sonar report, certifying that the highlighted issues did
not have any influence on the different behaviour or performance of any
of the releases in either of the two versions.

The third release corresponds to a perfective maintenance inter-
vention. Perfective maintenance consists in the addition of new func-
tionalities to a previous release. Hence, the programmer was asked to
add a third game, Ladders, to both versions. Architecturally speaking, it
requires the implementation of specialisations of Game, Match and
Board, as well as the logic required for processing matches of this well-
known game.

Fig. 18 summarises the complete development process:

• Release 1 is a "crude version” of a server that offers Tic-tac-toe and
Kuar.

• Release 2 is a "clean version” of Release 1, after having solved all the
problems detected by the static analysis. To be precise, it is a version
of Release 1 after a preventive maintenance intervention has been
carried out.

• Release 3 corresponds to a perfective maintenance intervention on
Release 2, since it consists of the addition of new functionalities to
the system.

5. Experimental procedure

In the execution of our experiment we followed the process defined

Fig. 8. Functional view of the two system versions.

C. Calero et al.

Sustainable Computing: Informatics and Systems 32 (2021) 100603

6

by [27], which focuses on the analysis of software energy consumption.
The process is composed of a set of phases which cover all the steps
needed to carry out a correct analysis of the energy consumption of a
software while it is being executed (Fig. 19).

5.1. Phase 1 (Scope Definition)

According to [27], in this phase it is necessary to: (1) define the
objective, (2) choose the Software Entity Class under study and (3)
choose the Software Entity, which is the software that is to be charac-
terised by measuring its attributes. Finally, the fourth activity (4) is the
development of test cases to execute and measure energy consumption.

For the first step (definition of the objective), the authors propose
to apply Wohlin et al.’s GQM template [26]. The objective of our study
can therefore be formally defined as:

• To analyse the execution time and the energy consumption of
executing the same scenarios with both versions and in each of the
three releases.

• for the purpose of understanding its behaviour
• in terms of software development, preventive maintenance and

perfective maintenance, using Spring or not using Spring
• from the point of view of software developers, software acquirers, and

software service consumers
• in the context of software service development, acquisition and

consumption.

Fig. 9. Structure of the database.

Fig. 10. The Kuar game.

Fig. 11. General structure of the business layer in the Tic-tac-toe game.

C. Calero et al.

Sustainable Computing: Informatics and Systems 32 (2021) 100603

7

It should be noted that we have focussed special attention on all the
stakeholders involved, from those in software development to those in
software consumption, since we believe it is important to start incul-
cating a social conscience about the impact that software has on global
warming.

The Entity Classes under study are both versions (Spring and Non-
Spring) of the same application, and their three releases together
make up the Software Entities.

The fourth and last step is the definition of the test cases that will be
executed to measure energy consumption and execution time.

In this experiment, test cases are implemented as JUnit test cases that
exercise exactly the same functionality in both versions. Even the code of
test cases is exactly the same in both versions, with the only exceptions
being: (1) the auxiliary methods that access the database to perform
some assertion (number of moves inserted, for example) and (2) the

method used to delete all the records before executing the tests, thus
leaving the database empty, in an initial state that allows the repro-
ducibility of test cases.

Fig. 20 shows the setUp method of both versions: several statements
in the Non-Spring version, and just a single call to the deleteAll method of
a repository in the Spring version. Since all the foreign key relationships
in the database are on delete cascade, deleting all the players also deletes
all the records in all the tables (as per the relational schema in Fig. 9).

The test cases exercise all the functionalities shown in the use case
diagram of Fig. 8. For Releases 1 and 2, they test:

1) User register, with both valid and invalid credentials.
2) User login, with both valid and invalid credentials.
3) Password recovery, both in the normal scenario (successful recovery)

and in an invalid one (invalid token).

Fig. 12. Specializations for Tic-tac-toe.

Fig. 13. Specialisations for Kuar.

Fig. 14. Structure of the Non-Spring version.

C. Calero et al.

Sustainable Computing: Informatics and Systems 32 (2021) 100603

8

4) Two players play a single match of Tic-tac-toe.
5) Two players play a single match of Kuar.
6) Parallel execution of 100 user registers, 100 logins and 50 simulta-

neous matches of Tic-tac-toe and Kuar with the 100 logged-in users.

For Release 3, which includes the Ladder game after the perfective
maintenance intervention, we extended the 6th test to include 50
simultaneous matches of Ladder.

As may be seen, the 6th test simulates an important load of players

connected simultaneously to the system and executing operations
concurrently, all of them requiring access to the database.

It is important to highlight the coverage reached by the tests: it must
be high enough to ensure that all the scenarios are being executed in
both system versions.

Table 2 shows the statement coverage of the tests, measured by the
Eclemma2 code coverage plugin for Eclipse. The shaded-in cells corre-
spond to non-present classes in some of the products. In the Spring
version, the repositories are not included, since they are mere interfaces
with non-implemented methods.

There are some noteworthy differences in the results for some clas-
ses, although for our context they are not meaningful. For example, the
coverage on Board reaches 49 % in the Non-Spring system and 28 % in
the Spring system. Table 3 shows the coverage details of Board in both
versions:

• In the Non-Spring system, and setting aside the non-visited (and non-
used) methods, the constructor Board() and the methods set_id, set-
BestTime and setTimesPlayed are explicitly called in the KuarBoard-
DAO class when a board is loaded from the database.

• In the Spring system, and since Board is an @Entity class, the self-
Spring framework reflectively calls the constructor and its setter
methods. However, Eclemma is not able to detect these calls.

Another apparently significant difference appears in the coverage of
KuarGame, with 26 % in the Non-Spring system and 100 % in the Spring
one. This difference proceeds from a method called getRandomBoard
(boolean testingMode), which is thought to return a random board from
the database when the testingMode parameter is false, and always the

Fig. 15. Structure of the Spring version.

Fig. 16. Insertion of a movement in the Non-Spring version.

Fig. 17. Movement is an @Entity in the Spring version.

Table 1
Sonar summary of the first release of both versions.

Non-Spring Spring

LOC 1,456 1,039
Bugs 11 1
Vulnerabilities 18 1
Code smells 119 82
Security hotspots 4 2
Duplications 1.2 % 0.0 %
Quality gate Passed Passed
Technical debt 3 days 2 days

2 https://www.eclemma.org/.

C. Calero et al.

https://www.eclemma.org/

Sustainable Computing: Informatics and Systems 32 (2021) 100603

9

same board otherwise: this method fulfils this requirement in the Non-
Spring version (i.e. it actually returns a random board), but has a
“fake” implementation in the Spring version (i.e. it does not check the
value of the parameter and always returns the same board). The
coverage reached in the KuarGame class of both products is therefore, for
our goal, exactly equivalent.

It seems clear that the test suite designed covers the functionalities of
the products widely enough that we can proceed with the analysis of the
measurements obtained.

5.2. Phase 2 (Measurement Environment Setting)

This phase is intended to satisfy the objective defined in the first
phase. It consists of five activities:

Fig. 18. Summary of the releases.

Fig. 19. Process for evaluating the energy efficiency of the software [27].

Fig. 20. An example of the differences in the auxiliary methods.

Table 2
Statement coverage reached by the test suite.

Statement coverage (%)

Package Class Non-Spring Spring

dao Broker 84
dao Broker.BrokerHolder 63
dao GinsengConnection 100
dao GinsengPooledConnection 100
dao KuarBoardDAO 81
dao Pool 58
dao.noSpring.noPool MatchDAO 82
dao.noSpring.noPool PlayerDAO 53
dao.noSpring.noPool SimplePlayerDAO 73
dao.noSpring.noPool TokenDAO 62
domain AbstractPlayer 100 80
domain Board 49 28
domain Game 82 86
domain Manager 95 97
domain Manager.ManagerHolder 67 63
domain Match 90 87
domain Movement 100
domain Player 92 82
domain SimplePlayer 77 100
domain Token 92 100
domain.kuar KuarBoard 94 90
domain.kuar KuarGame 26 100
domain.kuar KuarMatch 100 100
domain.tictactoe TictactoeBoard 67 67
domain.tictactoe TictactoeGame 100 100
domain.tictactoe TictactoeMatch 100 100

Mean 79 86

C. Calero et al.

Sustainable Computing: Informatics and Systems 32 (2021) 100603

10

1) Selection of the measuring instrument used to perform the time and
power consumption measurements of the software analysed.
The measurement environment to be used to evaluate the energy
efficiency of the software is FEETINGS (Framework for Energy Effi-
ciency Testing to Improve eNviromental Goals of the Software [28],
a framework for measuring and analysing the energy consumption of
a software application (see Fig. 21). FEETINGS consists of two main
elements: (i) an EET (Efficient Energy Tester), which is a device that
measures the energy consumption of a set of hardware components
when the Software Entity is executed in the DUT (Device Under Test);
and (ii) an ELLIOT, which is the software application that processes
and analyses the data collected by the EET.

2) Specifications of the Device Under Test (DUT). The DUT is a desktop
computer that allows the execution of the test cases in order to carry
out the time and energy consumption measurements. In our experi-
ment the DUT had the following specifications:
1. Asus M2N-SLI Deluxe motherboard.
2. AMD Athlon tm 64 × 2 Dual Core 5600 + 2,81 GHz processor.
3. 4 modules of 1GB DDR2 MHz RAM memory.
4. Seagate Barracuda 7200 500Gb hard disk drive.
5. Nvidia XfX 8600 GTS graphics card.
6. Power supply 350 W AopenZ350-08Fc.
7. Windows as operating system.

3) Selection of the measures to be used for the analysis, which will be
applied to the three releases of both versions. In this study, the
measures are:
• Energy consumption of the processor, the HDD and the DUT (the

overall energy consumption). Since we focus on the long-term
impact of offering software services in a system running 24 × 7
with no GUI, we will not collect the energy consumed either by the
graphics card or the monitor.

• Execution time obtained from the computer clock.
• As we have explained, some other measures were taken with

SonarCloud to improve the internal quality between the first and

the second release of both versions. The measurements considered
were LOC, Bugs, Vulnerabilities, Code Smells, Security Hotspots,
Duplications, Quality Gate and Technical Debt.

4) Checking that no other software is running in the background and
interrupting all services and processes that may affect the baseline
measurement of consumption. This will be executed when the
experiment is run.

5) Finally, the fifth activity is to obtain a baseline of the energy con-
sumption. In our case, as we are performing the measurements on the
same environment for all the releases and versions, the possible
extent of any effect on the baseline energy consumption is the same
for all of them, and so does not add noise to the data for comparison
purposes. It is worth emphasising that our objective is to find out if
there is any significative difference in execution time and energy
consumption between using Spring and not using Spring; the goal is
not to discover what this difference is exactly, because this will al-
ways depend on the environment in which the applications are run.

5.3. Phase 3 (Measurement Environment Preparation)

This phase is composed of three activities: checking that no other
software is running in the background; determining the number of times
each measurement should be repeated; and configuring the testbed, by
installing the Software Entity and the services required in the DUT. In
this last activity, the chosen Software Entity must also be prepared in
such a way as to enable the execution of the defined test cases.

To enable the EET to take the measurements, the DUT (a desktop
computer) is not directly connected to the power supply, but rather to
the EET; it records the power consumed, stores these data on an SSD
memory card, and supplies them to the DUT. Once these physical con-
nections have been made, the protocols for executing the experiment
can be defined. Following these protocols will assure that the three steps
of this phase are accomplished.

The protocol for the measurement of the Non-Spring version of each
release will thus be:

1) The Device Under Test is cleaned.
2) The Non-Spring version is stored on the DUT.
3) The test suite is launched against the version.
4) The execution time and energy consumption measures, which have

been collected by the EET, are saved onto a file.

We then performed the same above steps with the Spring version.
In order to avoid undesirable effects, and to guarantee the reliability

of the analysis and statistical results obtained, steps 3 and 4 of each
protocol were recorded 101 times, and each set of test cases was
launched 101 times against each version. By repeating the measurement
101 times it is possible to detect if there is any other software running in
the background, as the results would then present differences between
them.

5.4. Phase 4 (Measurement Performance)

This phase consists of the execution of the experiment using the
defined tests on the Software Entities described, according to the pro-
tocol defined, on the DUT specified, and using the EET to take the
measurements (Fig. 21).

During the 101 instances of each execution of each release of both
product versions, the EET saves a huge amount of data on the memory
card; this must later be processed in order to obtain the final results. In
Fig. 22, the data collected by the EET are shown.

5.5. Phase 5 (Test Case Data Analysis)

The main goal of the fifth phase is the processing and analysis of the
energy consumption data of each of the test cases defined in the first

Table 3
Differences in the coverage of domain.Board.

Method Non-Spring Spring

Board() 100 % 0%
Board(Match) 100 % 100 %
get_id() 100 % 100 %
getBestMovements() 0 % 0 %
getBestTime() 0 % 0 %
increaseTimesPlayed() 0% 0 %
load(String) 0 % 0 %
set_id(String) 100 % 0 %
setBestMovements(int) 0 % 0 %
setBestTime(int) 100 % 0 %
setMatch(Match) 100 % 100 %
setTimesPlayed(int) 100 % 0 %
toJSON() 0 % 0 %

Fig. 21. The EET device measures the energy consumed by the DUT.

C. Calero et al.

Sustainable Computing: Informatics and Systems 32 (2021) 100603

11

phase. This phase is composed of two different activities: preparation of
the raw data, and the statistical analysis of the values obtained from the
measurements of the defined test cases. Both activities are carried out by
means of ELLIOT (part of FEETINGS). For the first activity, the average
values of each of the measurements are calculated. This necessary step
enables us to work with a single value that derives from a large number
of values captured by the EET. During this activity we have to check for
possible outliers, removing them from the set of data. As we mentioned
in the previous section, we repeated the measurement 101 times.
Consequently, during this activity we have to clean the data and remove
invalid executions. An execution can be considered invalid for one of
two different reasons: a wrong execution, or an outlier. In the former, all
of the values obtained are not consistent with the rest of the results for
the other executions. In such case, it is possible that another program
may have been running in the background. In the latter, the execution is
eliminated because it shows an outlier when one or more values are
either too high or too low with respect to the rest of the results for the
other executions.

In our case, we have removed the following executions (see Table 4):
Once the data have been processed and prepared, the descriptive

statistics of the values obtained are calculated (See Table 5- Release1,
Table 6– Release 2 and Table 7 – Release 3).

Boxplots enable us to study the distributional characteristics of a
group of scores, as well as the level of the scores. The scores are sorted,
and four equal-sized groups are made from the ordered scores. The lines
dividing the groups are called quartiles, and the groups are referred to as
quartile groups. The boxplots of the consumption data for our study are
shown in Figs. 23–25.

If the four sections of a boxplot are uneven in size this means that,
while many measurements have similar values in certain parts of the
scale, in other parts the measurements are more variable. In our case, all
the boxplots, except the ones for Release 2 with Spring and for the Total
consumption (see Fig. 24), are even in size.

The median is represented by the line in the box. The interquartile
range box represents the middle 50 % of the data (values from the 2nd to
the 3rd quartile).

The whiskers extend from either side of the box. The whiskers
represent the ranges for the bottom 25 % and the top 25 % of the data

values, excluding outliers. As we can see in Figs. 23–25, there are no
outliers because no data point is located outside the whiskers of the
boxplot.

The plots which show a similar distribution of the data points for the
first and second quartiles to the data of the third and fourth quartiles,
represent a normal distribution. The boxplots are skewed left for Release
1 HDD with non-Spring, Release 2 HDD, and Release 3 HDD and Pro-
cessor with Non-Spring, whereas they are skewed right for Release 1
HDD with Spring, and Release 2 Total with Non-Spring.

If we compare the boxplot between releases and the same compo-
nent, that is the boxplot of HDD for Release 1 with Spring and with Non-
Spring, or the boxplot of Processor for Release 1 with Spring and with
Non-Spring, we can observe that the median line lies outside the box of
the comparison boxplot; thus, there is a difference between the two
groups. This means that there are differences between the consumption
of the releases, depending on the use or not of Spring.

Finally, we can analyse the interquartile range to examine how the
data is dispersed. As is shown in Figs. 23–25, in general the box length is
small, therefore the data are not greatly dispersed.

5.6. Phase 6 (Software Entity Data Analysis)

In Phase 6, the results of the execution time and the energy con-
sumption for both versions of each release can be compared, in an effort
to arrive at a conclusion related to the RQ posed at the beginning of this
study.

In the following tables we will show the mean values obtained for the
time required for running the test suite (Time column), and the mean
figures for the energy consumed by the hard disk (HDD column), the
processor (Processor column) and the DUT (Total column).

Table 8 shows the mean results for Release 1 (Tic-tac-toe and Kuar
with no refactoring).

As can be observed, in Release 1, the Non-Spring version requires
almost 16 % more time to perform the same operations. In relation to the
energy required, the Spring version requires more for the HDD, the
processor and, in general, for the DUT.

The hard disk demands more energy than the processor, although the
difference in the amount of energy consumed by the processor is espe-
cially significant; this is likely to be due to the extra effort required by
the reflective engine that processes Spring annotations.

Our initial conclusion regarding this first release is that using Spring
is not positive, either from the point of view of energy consumed or the
execution time.

The second release offers the same functionalities as the previous
one, but it includes some changes in the code, in line with the Sonar
Cloud report (see Table 1).

The summary of the results for Release 2 appears in Table 9.
Execution time is again greater in the Spring version, taking some 13 %
more time than is required by the Non-Spring version.

It is worth noting that the corrections introduced in the code reduce
the differences between the Non-Spring and the Spring versions. It
should be highlighted that once more, in this latter version, the hard disk
energy consumption is the highest for the components, but the biggest
difference in consumption between using or not using Spring is in the
processor.

As a general conclusion, after the preventive maintenance it seems
that although the differences between Spring and Non-Spring versions
are minor, the consumption pattern remains the same as in Release 1; for
instance, the use of Spring gives a worse result from the point of view of
energy consumption than it does when not using it.

However, looking at the figures obtained, the values for Release 2
are, in general, worse than those for Release 1, which in theory should
not make sense, bearing in mind that in Release 2 we are supposedly
improving upon Release 1.

If we look at the changes made, we observe that before doing the
changes derived from the analysis with SonarCloud, when a search is

Fig. 22. An excerpt of the raw data saved by the EET.

Table 4
Cleaning of executions.

Release 1 Release 2 Release 3

Spring Non-
Spring

Spring Non-
Spring

Spring Non-
Spring

Wrong execution 2 3
Outlier 1 2 6 2 9
Total number of

valid
executions

101 98 99 92 99 92

C. Calero et al.

Sustainable Computing: Informatics and Systems 32 (2021) 100603

12

carried out on the database (for example, when a user logs in), the search
goes to the repository and returns the object that is being searched for
(Fig. 26, top row). However, Sonar recommends to check whether the
object exists before it is recovered (Fig. 26, bottom row). Some times
(when it is certain that the instance exists in the databse), the imple-
mentation of this recommended improvement may suppose a slight
“deoptimisation”, which has a certain negative impact on the time, since
this implementation is executed many times; hence the results obtained
for Release 2 are higher. Nevertheless, we consider that this increase is
not very significant, and that the pattern of comparison between Spring
and Non-Spring in this second release subsequent to the preventive
maintenance is maintained.

The third and last release consists of the addition of a new game to
the system and in measuring the execution time and energy consump-
tion of the tests.

As may be seen (Table 10), in this case also the differences between
both versions are very significant: executing the same scenarios requires
almost 44 % more time with Spring, almost 50 % more energy to read
from and write on the hard disk, in excess of 70 % more energy is
required by the processor, and there is an increase of around 60 %-plus
in the energy required by the computer. Again, the biggest difference in
the energy required between the Spring and the non-Spring versions is in
the processor.

The perfective maintenance carried out therefore can be seen to have
a negative impact on the execution time and energy consumption
required by the Spring version. In fact, it is the worst scenario of the
three studied, as the percentage of the differences for all the measures
(with the exception of the processor percentage of Release 1), is much
higher than for the two previous releases.

Finally, considering the three releases together, we can conclude
that, quantitatively speaking, the greatest amount of energy is used by
the hard disk, because it requires the continuous spin and the physical
shift of the R/W head. Percentage-wise, the biggest difference is in the
consumption of the processor.

If we look at the progression of the different measures among re-
leases, we obtain the following results (Figs. 27–30).

The preventive maintenance, being just the correction of bugs, pre-
sents only a small increase in the execution time and in the energy
required by the hardware components and the whole computer that is
under analysis, mainly due to the actions performed in compliance with
the Sonar indications. However, the consumption pattern between
Spring and Non-Spring remains the same as in the other releases. On the
other hand, the perfective maintenance represents an extension of the
system and as such there is a big difference among its values and those of
the previous releases.

In any case, the values required by the Spring version in all the re-
leases are greater than those required by the Non-Spring version.

As a general conclusion, it seems that products developed without
using Spring are better in all the conditions and for all the measures. This
could indicate that, although Spring has some advantages for pro-
grammers, once the product starts to run this advantage disappears in
benefit of the Non-Spring development.

These conclusions allow us to answer our research questions
accordingly:

RQ1. Is there a relationship between the execution time required by
an application when it is run and the use of Spring during its
development?

It seems that, from the study undertaken and the data acquired, there

Table 5
Values for Release 1.

Energy Consumption (in watts*second)

Execution Time (s) HDD Processor Total

Spring Non-Spring Spring Non-Spring Spring Non-Spring Spring Non-Spring

Mean 4,32 3,73 67,61 58,25 32,94 18,90 801,86 529,28
Standard Deviation 0,49 0,53 0,14 0,18 0,26 0,33 6,03 7,12
Median 67,97 58,43 34,10 14,38 803,77 518,77
Max 5,09 4,58 79,46 71,94 20,55 24,25 967,69 673,20
Min 3,02 2,51 46,11 38,42 39,16 10,87 521,81 340,44

Table 6
Values for Release 2.

Energy Consumption (in watts*second)

Execution Time (s) HDD Processor Total

Spring Non-Spring Spring Non-Spring Spring Non-Spring Spring Non-Spring

Mean 4,53 4,02 71,16 61,78 34,66 19,98 825,59 590,64
Standard Deviation 0,47 0,43 0,26 0,59 0,39 0,76 6,55 6,28
Median 71,51 62,92 36,53 15,56 828,22 573,69
Max 5,53 6,03 87,86 92,10 42,17 27,23 1014,65 803,81
Min 3,02 3,02 47,79 44,72 24,11 7,12 566,52 462,19

Table 7
Values for Release 3.

Energy Consumption (in watts*second)

Execution Time (s) HDD Processor Total

Spring Non-Spring Spring Non-Spring Spring Non-Spring Spring Non-Spring

Mean 34,65 24,07 532,82 355,59 151,13 87,05 5149,62 3190,41
Standard Deviation 2,35 0,71 0,17 0,84 0,24 0,53 2,65 1,00
Median 532,95 369,01 115,06 84,62 4767,03 3097,31
Max 39,19 25,63 599,92 394,37 178,34 107,57 5798,14 3424,26
Min 30,64 22,60 467,25 310,91 126,15 42,32 4607,24 2929,44

C. Calero et al.

Sustainable Computing: Informatics and Systems 32 (2021) 100603

13

is a negative relationship between the use of Spring and the time needed
by the application for it to run. This implies that from the point of view
of execution time, it seem to be better to avoid the use of Spring.

RQ2. Is there a relationship between the energy needed to run an
application and the use of Spring during its development?

Based on the data from our study, the use of Spring is not positive -
neither for the consumption of the hard disk, nor the computer; it is
especially not positive from the point of view of the processor, where the
consumption of the Spring version is greater than that of the Non-Spring
version in all three releases.

5.6.1. Contextualizing the results
In spite of our previous comment that we wish to compare the results

without paying precise attention to the consumption data of the
different scenarios (this is why we have not calculated and eliminated
the baseline), in an endeavour to give clarity as to what the differences
obtained imply, we nevertheless present an estimation of the difference
in the CO2 footprint in the long-term, using the consumption informa-
tion obtained for the two versions of Release 3. The calculus will be
based on the continuous execution of the system for six months
(15,552000 s). As every country and territory produces electricity

employing different technologies, we will use the CO2 footprint calcu-
lators of Rensmart.com3 (which has data from the European Union),
along with data of other important energy consumer countries:

• In the EU, Sweden is the country that requires the least emissions to
produce electricity (0.013 Kg of CO2 per Kw h, while Estonia needs
0.819 Kg/Kw h The mean of the European Union is 0.30 Kg per Kw h

• In United States4, the mean is 0.45 Kg/Kw h
• China5 requires 0.56 Kg/Kw h
• India6 produces 0.60 Kg per Kw h

Table 11 summarises the data for the EU and the USA, showing the
difference in CO2 footprint between six months’ usage of Spring and
Non-Spring, respectively. The difference is significant, and it relates only

Fig. 23. Boxplots for Release 1.

3 https://www.rensmart.com/Calculators/KWH-to-CO2.
4 U.S. Energy Information Administration: https://www.eia.gov/.
5 https://www.climate-transparency.org/wp-content/uploads/2019/11

/B2G_2019_China.pdf.
6 http://erpc.gov.in/wp-content/uploads/2018/06/carbon-emissions-from-

power-sector-7062018.pdf.

C. Calero et al.

https://www.rensmart.com/Calculators/KWH-to-CO2
https://www.eia.gov/
https://www.climate-transparency.org/wp-content/uploads/2019/11/B2G_2019_China.pdf
https://www.climate-transparency.org/wp-content/uploads/2019/11/B2G_2019_China.pdf
http://erpc.gov.in/wp-content/uploads/2018/06/carbon-emissions-from-power-sector-7062018.pdf
http://erpc.gov.in/wp-content/uploads/2018/06/carbon-emissions-from-power-sector-7062018.pdf

Sustainable Computing: Informatics and Systems 32 (2021) 100603

14

to Release 3 of our example. This comparison gives us an idea of the
great impact that not using Spring might have on the environment.

5.7. Phase 7 (Reporting the results)

The last phase (Phase 7) is about documenting the study performed,
describing the entire process followed, and presenting the results
regarding the energy consumption of the software.

This activity includes the writing-up of detailed documentation to
explain the whole process and the results obtained in this paper.

6. Threats to validity

Despite being very methodical when preparing and performing our
experiment, we are nonetheless aware of some possible threats to its
validity. In the paragraphs below we analyse the construct, internal and
external validity in accordance with the definitions of Wohlin et al. [29].

Construct validity is the “degree to which the independent and the
dependent variables are accurately measured by the measurement in-
struments used in the experiment”.

In this experiment, the dependent variables are the execution time
and the consumption of energy required for executing the test scenarios;
these have been objectively measured by the Efficient Energy Tester

developed in our laboratory, which has been validated as a reliable
device for measuring the energy efficiency of running software. More-
over, all the executions have been repeated 101 times, and both products
have run on the same physical machine, operating system and config-
uration. So as to avoid any possible bias from the execution of the
database server, this was placed on a different physical machine.

The independent variable is the use or not of Spring in the system
version.

With regard to the test cases used, we have followed the recom-
mendations given in [27]: the test cases execute the necessary func-
tionality of the software product that is to be measured (they reach high
coverage in both versions); they are independent and do not affect the
subsequent test case (the database is emptied after each test execution);
they simulate user inputs and focus on specific software tasks; they can
be executed against both system versions (with the minor exception of
the small amount of details explained in Section 5.1 above).

Internal validity is the degree of confidence in a cause-effect rela-
tionship between factors of interest and the results observed.

Due to the nature of both experiments, all variables have been
controlled, so threats to internal validity are minimised. In particular,
the test cases are the same, and run the same scenarios and situations in
both products (developed with and without Spring). It is worth noting
again that the repetition of the experiments 101 times also helps to

Fig. 24. Boxplots for Release 2.

C. Calero et al.

Sustainable Computing: Informatics and Systems 32 (2021) 100603

15

minimise any possible bias.
External validity is the “degree to which the research results can be

generalized to the population under study and other research settings”.

The greater the external validity, the more the results of an empirical
study can be generalised to actual software engineering practice.

As in most software engineering experiments, the extenal validity is

Fig. 25. Boxplots for Release 3.

Table 8
Mean results for Release 1.

Average energy consumption (in
watts*second)

Execution time (seconds) HDD Processor Total

Non-Spring 3,73 58,25 18,9 529,28
Spring 4,32 67,61 32,94 801,86
Difference 15,82 % 16,07 % 74,29 % 51,50 %

Table 9
Mean results for Release 2.

Average energy consumption (in
watts*second)

Execution time (seconds) HDD Processor Total

Non-Spring 4,02 61,78 19,98 590,64
Spring 4,53 71,16 34,66 825,59
Difference 12,69 % 15,18 % 73,47 % 39,78 %

Fig. 26. Changes when searching in the database.

Table 10
Mean results for the third release.

Average energy consumption (in
watts*second)

Execution time (seconds) HDD Processor Total

Non-Spring 24,07 355,59 87,05 3190,41
Spring 34,65 532,82 151,13 5149,62
Difference 43,96 % 49,84 % 73,61 % 61,41 %

C. Calero et al.

Sustainable Computing: Informatics and Systems 32 (2021) 100603

16

the weakest aspect of our experiment. The system is in fact small, and
cannot be absolutely generalised to any other system.

However, it should be noted that:

• Both versions have been developed by a senior programmer with
many years of experience in Java development.

• Both versions follow classical architectural patterns, which have
been widely tested and applied in an infinite number of projects.

• The second release of both versions eliminated the possible bad
smells that the programmer had committed in the first one.

• It is also clear that the reflective processing of annotations requires
greater computational effort. This experiment has not done anything
other than measure its possible impact on a sample system.

All of these facts lead us to affirm that our results are generalisable to
any given Spring application.

Furthermore, in order to allow the scientific community to replicate
our experiments, the source code of the three versions of both systems is
available for their use in the laboratory package generated for the
experiment, as follows:

• The Non-Spring system is available for download at: https://bit
bucket.org/macariopolo/ginsengnoorm

• The Spring system can be found at: https://bitbucket.org/macari
opolo/ginsengconjpa

7. Conclusions and future work

Respect for the environment is something that has become a
mandatory element of life in present-day society. Many sectors have
already incorporated this concept as a key element of their business,
treating it as an important business objective.

It is apparent, however, that in the software development sector such
sensitivity towards this issue has not yet taken root, and that there are
currently very few initiatives to design software in a way that respects
the environment. The fact is that, although software is certainly a great
facilitator in the world in which we live today, it is also a great energy
consumer. Although there exists a multitude of applications designed to
help the world and its inhabitants to function better, and millions of
individuals use this software on a massive scale, awareness as to the
energy that this software demands is still lacking.

Software development companies need to be aware of the impact
that their products have on the environment, and begin to take on the
task of improving its energy efficiency as an integral part of their busi-
ness objectives. Unfortunately, as shown in the study carried out by [3]
regarding the CSR policies of the top ten software companies, the efforts
devoted to improving the environmental impact of software represent a
truly minimal percentage of all the activities undertaken by these
companies.

As software engineers, we ourselves must contribute to a change of
vision in this sector. One good way to set about doing so is to give
companies clear guidelines on how to act.

Accordingly, in this paper we set out to discover if the use of Spring
in developing software is better, from the point of view of energy con-
sumption, than not using Spring. We chose Spring since it is a widely-
used technology for developing Java applications that reduces the

Fig. 27. Comparing execution time among the three releases.

Fig. 28. Comparing HDD average energy consumption among the
three releases.

Fig. 29. Comparing average processor energy consumption among the
three releases.

Fig. 30. Comparing Total average energy consumption among the
three releases.

Table 11
Total CO2 footprint (in tons of CO2) of Release 3 during six months.

Country footprint (Kg/
Kw h

Non-Spring (13,910.8
Kw h

Spring (22,302.4
Kw h

EU 0.30 4.17 6.69
USA 0.45 6.26 10.04
China 0.56 7.79 12.49
India 0.60 8.35 13.38

C. Calero et al.

https://bitbucket.org/macariopolo/ginsengnoorm
https://bitbucket.org/macariopolo/ginsengnoorm
https://bitbucket.org/macariopolo/ginsengconjpa
https://bitbucket.org/macariopolo/ginsengconjpa

Sustainable Computing: Informatics and Systems 32 (2021) 100603

17

time to market of new applications. This technology can help developers
save a lot of development time, by eliminating the need for writing
boilerplate code and thereby improving the productivity of those de-
velopers. Of course, these advantages may seem very attractive from the
business point of view. However, the massive use of reflection implies
additional effort for the computer running the system. We therefore
decided to study whether this increment in the computer’s needs affects
its energy consumption in a significant way and compared the energy
needed by the same application when developed with and without using
Spring.

The paper shows the three different releases developed for the same
application, using Spring on the one hand, and not using Spring on the
other. Thus, six different applications have been developed. First of all,
in order to study the maintainability, a preventive maintenance was
carried out to the first release of the application. As a result, a second
release was obtained. Next, a perfective maintenance was performed
and the outcome of this was a third release. The energy required for each
release was measured, recovered and analysed by means of FEETINGS, a
framework for measuring and analysing the energy consumption of a
software application.

By way of conclusion, we have been able to ascertain that the re-
leases developed using Spring need much more energy than those
developed without using it. Although it would be necessary to conduct
more testing and use different applications, developed by different
programmers, the outcomes shown in this paper can be considered as a
first aproximation. Moreover, taking into account the philosophy and
the characteristics of Spring we consider that the results should be
confirmed.

Based on the results previously explained, our recommendation to
the software industry would be take into account not only the benefit of
using Spring from the point of view of development time or time to
market but also the negative aspect of the increased energy consumption
that using Spring entails. In such way, the industry should seek to bal-
ance the two perspectives and so try to minimise the use of Spring in
developing software wherever possible. Evidently, such change may
have an economic impact, because the time to market could be greater
and the productivity of workers less. Nevertheless, a positive impact
upon indirect earnings related to enhanced brand reputation could
compensate for these less desirable effects, and turn out to have an
overall positive impact on the economic situation of the industry. In fact,
in 2019 the high-risk investment fund TCI Fund Management decided to
invest only in companies who have a convincing strategic plan to
combat the catastrophic climate situation, a decision which gave them
substantial profits - such that they became the most profitable fund in
2019. Also, BlackRock, the world’s leading investment fund, has joined
the climate crusade, with its CEO having defined climate change as the
most single-most decisive and determinant factor in shaping the long-
term perspectives on capital in companies around the world [29].

We need software industries that show they are beginning to be
aware of the importance of reducing the impact of software on the
environment; we need them to step forward and put the environment at
the forefront of their business objectives.

As a future work and in order to obtain more robust results we plan to
replicate this study in other computers. It is worth to emphasize that in
this case it will be neccesary to eliminate the baseline consumption of
the computer.

Moreover, we will continue to study different software engineering
techniques from the perspective of energy efficiency (for example, and
related to the study presented in this paper, we will look at the con-
sumption of the Spring-based web server). As part of this, we are
studying the energy consumption of different databases of different
complexity, as well as other types of non-gaming applications, to
corroborate whether the results are confirmed. We aim to produce a set
of good practices to be used in the IT industry and which would be
connected to the CSR of software companies. Our final goal is to design a
label classification system that enables the classification at different

levels of software companies and of the software they develop, in
function of their respective practices from an energy efficiency point of
view.

Declaration of Competing Interest

The authors do not have any conflict of interest

Acknowledgements

This work was part of the BIZDEVOPS-Global (RTI2018-098309-B-
C31), supported by the Spanish Ministry of Economy, Industry and
Competitiveness and by European FEDER funds, and was also part of the
SOS and TESTIMO projects (No. SBPLY/17/180501/000364 and
SBPLY/17/180501/000503, respectively), funded by the Department of
Education, Culture and Sport of the Directorate General of Universities,
Research and Innovation of the JCCM (Regional Government of the
Autonomous Region of Castilla-La Mancha).

References

[1] A.S.G. Andrae, T. Edler, On global electricity usage of communication technology:
trends to 2030, Challenges 6 (1) (2015) 117–157, https://doi.org/10.3390/
challe6010117.

[2] N. Wolfram, P. Lago, F. Osborne, Sustainability in software engineering,
Sustainable Internet and ICT for Sustainability (SustainIT) (2017), https://doi.org/
10.23919/SustainIT.2017.8379798.

[3] C. Calero, I. García-Rodríguez De Guzmán, M. Moraga, F. García, Is software
sustainability considered in the CSR of soft-ware industry? Int. J. Sustain. Dev.
World Ecol. 26 (5) (2019) 439–459, https://doi.org/10.1080/
13504509.2019.1590746.

[4] I. Manotas, C. Bird, R. Zhang, D. Shepherd, C. Jaspan, C. Sadowski, L. Pollock,
J. Clause, An Empirical Study of Practitioners’ Perspectives on Green Software
Engineering, Austin, TX, 2016, pp. 237–248, https://doi.org/10.1145/
2884781.2884810.

[5] A. Hindle, Green Software Engineering: The Curse of Methodology, Suita, 2016,
pp. 46–55, https://doi.org/10.1109/SANER.2016.60.

[6] A.J. Bokolo, A.M. Mazlina, Development of a green ICT model for sustainable
enterprise strategy, J. Soft Comput. Decis. Support Syst. 3 (2016) 1–12.

[7] Spring, «Spring makes Java simple». https://spring.io/.
[8] G. Belani, Programming Languages You Should Learn in 2020, IEEE Computer

Society https://www.computer.org/publications/tech-news/trends/programmin
g-languages-you-should-learn-in-2020.

[9] C. Calero, M. Piattini, Puzzling out Software Sustainability, Sustain Comput Inform.
Syst 16 (2017) 117–124, https://doi.org/10.1016/j.suscom.2017.10.011.

[10] C. Pang, A. Hindle, B. Adams, E. Hassan, What do programmers know about the
energy consumption of software? IEEE Softw. 33 (2016) 83–89, https://doi.org/
10.1109/MS.2015.83.

[11] G. Pinto, F. Castor, Energy efficiency: a new concern for application software
developers, Commun. ACM 60 (12) (2017) 68–75, https://doi.org/10.1145/
3154384.

[12] D. Li, W.G.J. Halfond, An Investigation Into Energy-saving Programming Practices
for Android Smartphone App Development, 2014, pp. 46–53.

[13] R. Pereira, M. Couto, F. Ribeiro, R. Rua, J. Cunha, J.P. Fernandes, J. Saraiva,
energy efficiency across programming languages: how Do energy, time, and
memory relate?, in: Proceedings of the 10th ACM SIGPLAN International
Conference on Software Language Engineering, New York, NY, USA, 2017,
pp. 256–267, https://doi.org/10.1145/3136014.3136031.

[14] L.G. Lima, F. Soares-Neto, P. Lieuthier, F. Castor, G. Melfe, J.P. Fernandes, On
Haskell and energy efficiency, J. Syst. Softw. 149 (2019) 554–580, https://doi.org/
10.1016/j.jss.2018.12.014.

[15] M. Hähnel, B. Döbel, M. Völp, H. Härtig, Measuring energy consumption for short
code paths using RAPL, SIGMETRICS Perform Eval. Rev. 40 (3) (2012) 13–17,
https://doi.org/10.1145/2425248.2425252, ene.

[16] R. Pereira, M. Couto, J. Saraiva, J. Cunha, J.P. Fernandes, The influence of the java
collection framework on overall energy consumption, in: Proceedings of the 5th
International Workshop on Green and Sustainable Software, New York, NY, USA,
2016, pp. 15–21, https://doi.org/10.1145/2896967.2896968.

[17] R. Pereira, T. Carção, M. Couto, J. Cunha, J.P. Fernandes, J. Saraiva, SPELLing out
energy leaks: aiding developers locate energy inefficient code, J. Syst. Softw. 161
(2020) 110463, https://doi.org/10.1016/j.jss.2019.110463.

[18] S.A. Chowdhury, A. Hindle, GreenOracle: estimating software energy consumption
with energy measurement corpora, 2016 IEEE/ACM 13th Working Conference on
Mining Software Repositories (MSR) (2016) 49–60.

[19] S. Chowdhury, S. Borle, S. Romansky, A. Hindle, GreenScaler: training software
energy models with automatic test generation, Empir. Softw. Eng. 24 (4) (2019)
1649–1692, https://doi.org/10.1007/s10664-018-9640-7, ago.

[20] S. Nakajima, Model-based power consumption analysis of smartphone
applications, ACESMB@MoDELS (2013).

C. Calero et al.

https://doi.org/10.3390/challe6010117
https://doi.org/10.3390/challe6010117
https://doi.org/10.23919/SustainIT.2017.8379798
https://doi.org/10.23919/SustainIT.2017.8379798
https://doi.org/10.1080/13504509.2019.1590746
https://doi.org/10.1080/13504509.2019.1590746
https://doi.org/10.1145/2884781.2884810
https://doi.org/10.1145/2884781.2884810
https://doi.org/10.1109/SANER.2016.60
http://refhub.elsevier.com/S2210-5379(21)00091-3/sbref0030
http://refhub.elsevier.com/S2210-5379(21)00091-3/sbref0030
https://spring.io/
https://www.computer.org/publications/tech-news/trends/programming-languages-you-should-learn-in-2020
https://www.computer.org/publications/tech-news/trends/programming-languages-you-should-learn-in-2020
https://doi.org/10.1016/j.suscom.2017.10.011
https://doi.org/10.1109/MS.2015.83
https://doi.org/10.1109/MS.2015.83
https://doi.org/10.1145/3154384
https://doi.org/10.1145/3154384
http://refhub.elsevier.com/S2210-5379(21)00091-3/sbref0060
http://refhub.elsevier.com/S2210-5379(21)00091-3/sbref0060
https://doi.org/10.1145/3136014.3136031
https://doi.org/10.1016/j.jss.2018.12.014
https://doi.org/10.1016/j.jss.2018.12.014
https://doi.org/10.1145/2425248.2425252
https://doi.org/10.1145/2896967.2896968
https://doi.org/10.1016/j.jss.2019.110463
http://refhub.elsevier.com/S2210-5379(21)00091-3/sbref0090
http://refhub.elsevier.com/S2210-5379(21)00091-3/sbref0090
http://refhub.elsevier.com/S2210-5379(21)00091-3/sbref0090
https://doi.org/10.1007/s10664-018-9640-7
http://refhub.elsevier.com/S2210-5379(21)00091-3/sbref0100
http://refhub.elsevier.com/S2210-5379(21)00091-3/sbref0100

Sustainable Computing: Informatics and Systems 32 (2021) 100603

18

[21] D. Li, S. Hao, W.G.J. Halfond, R. Govindan, Calculating source line level energy
information for android applications, in: Proceedings of the 2013 International
Symposium on Software Testing and Analysis, New York, NY, USA, 2013,
pp. 78–89, https://doi.org/10.1145/2483760.2483780.

[22] C. Zhang, A. Hindle, D.M. German, The impact of user choice on energy
consumption, IEEE Softw. 31 (3) (2014) 69–75.

[23] R. Jabbarvand, A. Sadeghi, J. Garcia, S. Malek, P. Ammann, Ecodroid: an Approach
for Energy-based Ranking of Android Apps., 2015, pp. 8–14.

[24] C. Sahin, F. Cayci, I. Manotas, J. Clause, F. Kiamilev, L. Pollock, K. Winbladh,
Initial explorations on design pattern energy usage, 2012 First International
Workshop on Green and Sustainable Software (GREENS) (2012) 55–61.

[25] L. Cruz, R. Abreu, J. Grundy, L. Li, X. Xia, Do energy-oriented changes hinder
maintainability? 2019 IEEE International Conference on Software Maintenance
and Evolution (ICSME) (2019) 29–40.

[26] S.A. Chowdhury, A. Hindle, R. Kazman, T. Shuto, K. Matsui, Y. Kamei.
GreenBundle: An Empirical Study on the Energy Impact of Bundled Processing,
2019, pp. 1107–1118, https://doi.org/10.1109/ICSE.2019.00114.

[27] J. Mancebo, F. García, C. Calero, A process for analyzing the energy efficiency of
soft-ware, Sent Inf. Softw. Technol. (2020).

[28] J. Mancebo, C. Calero, F. Garcia, M. Moraga, I. Garcia-Rodriguez de Guzman,
FEETINGS: Framework for Energy Efficiency Testing to Improve Environmental
Goal of the Software, Sustainable Computing: Informatics and Systems, 30, 2021,
https://doi.org/10.1016/j.suscom.2021.100558. ISSN 2210-5379.

[29] C. Wohlin, P. Runeson, M. Höst, M.C. Ohlsson, B. Regnell, A. Wesslén,
Experimentation in Software Engineering, Springer-Verlag, Berlin Heidelberg,
2012.

Calero, C. is a Professor at the University of Castilla-La Mancha
in Spain and has a PhD in Computer Science. Her research in-
terests include: software quality, software quality models,
software measurement and software sustainability definition,
evaluation, measurement and assessment.

Polo, M. is a Professor of Computer Science at the University of
Castilla-La Mancha. He has Msc and Phd degrees in Computer
Science. His main research areas are related to the automation
of software processes, especially testing.

Moraga, M. has a PhD in Computer Science. She received her
MSc in Computer Science and her Technical Degree in Com-
puter Science from the University of Castilla-La Mancha
(UCLM). She is currently associate professor at the Escuela
Superior de Informática of the University of Castilla-La Mancha
in Ciudad Real (Spain). She is a member of the Alarcos
Research Group which specializes in Information Systems,
Databases and Software Engineering in that University. Her
research interests are: software quality and software
sustainability.

C. Calero et al.

https://doi.org/10.1145/2483760.2483780
http://refhub.elsevier.com/S2210-5379(21)00091-3/sbref0110
http://refhub.elsevier.com/S2210-5379(21)00091-3/sbref0110
http://refhub.elsevier.com/S2210-5379(21)00091-3/sbref0115
http://refhub.elsevier.com/S2210-5379(21)00091-3/sbref0115
http://refhub.elsevier.com/S2210-5379(21)00091-3/sbref0120
http://refhub.elsevier.com/S2210-5379(21)00091-3/sbref0120
http://refhub.elsevier.com/S2210-5379(21)00091-3/sbref0120
http://refhub.elsevier.com/S2210-5379(21)00091-3/sbref0125
http://refhub.elsevier.com/S2210-5379(21)00091-3/sbref0125
http://refhub.elsevier.com/S2210-5379(21)00091-3/sbref0125
https://doi.org/10.1109/ICSE.2019.00114
http://refhub.elsevier.com/S2210-5379(21)00091-3/sbref0135
http://refhub.elsevier.com/S2210-5379(21)00091-3/sbref0135
https://doi.org/10.1016/j.suscom.2021.100558
http://refhub.elsevier.com/S2210-5379(21)00091-3/sbref0145
http://refhub.elsevier.com/S2210-5379(21)00091-3/sbref0145
http://refhub.elsevier.com/S2210-5379(21)00091-3/sbref0145

	Investigating the impact on execution time and energy consumption of developing with Spring
	1 Introduction
	2 A brief overview of spring, and the experimental objective in a nutshell
	3 Software engineering measurement background
	4 Experiment description
	4.1 Research questions
	4.2 Description of the system versions
	4.3 Description of the three releases

	5 Experimental procedure
	5.1 Phase 1 (Scope Definition)
	5.2 Phase 2 (Measurement Environment Setting)
	5.3 Phase 3 (Measurement Environment Preparation)
	5.4 Phase 4 (Measurement Performance)
	5.5 Phase 5 (Test Case Data Analysis)
	5.6 Phase 6 (Software Entity Data Analysis)
	5.6.1 Contextualizing the results

	5.7 Phase 7 (Reporting the results)

	6 Threats to validity
	7 Conclusions and future work
	Declaration of Competing Interest
	Acknowledgements
	References

